S-66 - FACTS ABOUT ELECTRONIC CHARTS AND CARRIAGE REQUIREMENTS

Edition 1.0.0 – January 2010

Published by the
International Hydrographic Bureau
MONACO
This work is copyright. Apart from any use permitted in accordance with the Berne Convention for the Protection of Literary and Artistic Works (1886), and except in the circumstances described below, no part may be translated, reproduced by any process, adapted, communicated or commercially exploited without prior written permission from the International Hydrographic Bureau (IHB). Copyright in some of the material in this publication may be owned by another party and permission for the translation and/or reproduction of that material must be obtained from the owner.

This document or partial material from this document may be translated, reproduced or distributed for general information, on no more than a cost recovery basis. Copies may not be sold or distributed for profit or gain without prior written agreement of the IHB and any other copyright holders.

In the event that this document or partial material from this document is reproduced, translated or distributed under the terms described above, the following statements are to be included:

"Material from IHO publication [reference to extract: Title, Edition] is reproduced with the permission of the International Hydrographic Bureau (IHB) (Permission No ……/…) acting for the International Hydrographic Organization (IHO), which does not accept responsibility for the correctness of the material as reproduced: in case of doubt, the IHO’s authentic text shall prevail. The incorporation of material sourced from IHO shall not be construed as constituting an endorsement by IHO of this product."

"This [document/publication] is a translation of IHO [document/publication] [name]. The IHO has not checked this translation and therefore takes no responsibility for its accuracy. In case of doubt the source version of [name] in [language] should be consulted."

The IHO Logo or other identifiers shall not be used in any derived product without prior written permission from the IHB.
Facts about Electronic Charts and Carriage Requirements

IHO Publication S-66 – Edition 1.0.0

January 2010
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Document History</td>
<td>5</td>
</tr>
<tr>
<td>Copyright and Reproduction</td>
<td>5</td>
</tr>
<tr>
<td>Feedback</td>
<td>6</td>
</tr>
<tr>
<td>Document History</td>
<td>6</td>
</tr>
</tbody>
</table>

Section 1: Overview of Electronic Charting and Regulations

- ECCIS ... 7
- ECS ... 7
- Where are the rules for professional marine navigation written down? 7
- What are the IMO requirements that apply to the carriage of nautical charts? 8
- What is a nautical chart? .. 8
- What kinds of electronic charts are available? ... 9
- What are official charts? .. 10
- What is an ENC? .. 10
- How do I recognise an ENC? .. 11
- What ENCs are available? .. 12
- How are ENCs protected from Unauthorised Changes? 12
- Are there other ways that ENCs can be distributed? 13
- What is an RNC? .. 13
- How are ENCs and RNCs kept up to date? ... 13
- Is it possible to check that all updates have been applied to an ENC? 14
- What is ECDIS? .. 14
- How is an ECDIS approved and by whom? .. 14
- Is there a need to keep ECDIS software updated? 15
- Is there a mandatory requirement to carry ECDIS? 15
- Meeting Carriage Requirements with ECDIS .. 16
- Back-up Requirements .. 16
- What to do in areas without ENC coverage? .. 17
- Does your ECDIS system meet IMO chart carriage requirements? 18
- Can chart format names indicate carriage compliance? 18
- Acceptance of ECDIS by Port State Control Authorities 19
- Is there a need for ECDIS training? ... 20
- What are the requirements for ECDIS training? 20
- What are the operational considerations when using ECDIS? 21
- What is ECS? ... 22
- Relevant IMO SN/ Circulars:... 22
 - IMO SN/ Circ.207/Rev.1: Differences between RCDS and ECDIS 22
 - IMO SN/ Circ. 255: Additional guidance on chart datum and accuracy of position on charts 22
 - IMO SN/ Circ. 276: Transitioning from paper chart to Electronic Chart Display and Information Systems (ECDIS) navigation .. 22

Section 2: List of Flag State Authorities

- ... 23

Section 3: ECDIS Training

- Required Documentation for ECDIS Training ... 25
Section 4: Technical Details of Electronic Charts

Official Electronic Chart Data
Types of Official Chart Data
Electronic Navigational Charts (ENCs)
 General Principles
 ENC Data Format
 ENC Display
 Use of ENCs in ECS
 ENC Distribution
 What is a SENC?
 SENC Delivery
 Official and Unofficial Data
 What scale should an ENC be displayed at?
 How are ENCs named?
 Updating ENCs

Raster Navigational Charts (RNCs)
 General principles
 RNC data format and production
 RNC Display
 RNC updating

Private Chart Data

Section 5: References and Glossary

References
Glossary/List of Abbreviations
Further Reading:

Relevant IMO Safety of Navigation Circulars

IMO SN/ Circ. 207/Rev. 1: Differences between RCDS and ECDIS
IMO SN/ Circ. 255: Additional guidance on chart datum and accuracy of position on charts
IMO SN/ Circ. 276: Transitioning from paper chart to Electronic Chart Display and Information Systems (ECDIS) navigation
Introduction

The International Convention on the Safety of Life at Sea (SOLAS) includes a requirement for all ships to carry up-to-date nautical charts and publications for the intended voyage. Progressively from 2012, the chart carriage requirement for certain classes of vessels is to be satisfied by electronic means using an Electronic Chart Display and Information System (ECDIS).

Feedback from those involved in the use of charts and electronic charting systems including manufacturers, distributors, users, ship owners, regulatory authorities, pilots, harbour authorities and others indicates a requirement to provide guidance on the regulations and the status of equipment that is available in the market today. In particular the differences between the various types of equipment and the differences between the various types of chart data offered to the users are unclear with respect to the regulations in place.

This document has been produced to help clarify some of the uncertainties. It is not intended to replace or amend national or international rules and regulations. Readers should always refer to the relevant national administration or Flag State for the latest detailed information.

This document consists of a number of interrelated sections. This first section contains information on various aspects of electronic charts and electronic chart display systems in the form of questions and answers. The main emphasis is on what can be used to satisfy the SOLAS carriage requirements for charts.

Section 1: Overview of electronic charting and regulations

Section 2: A list of points of contact for detailed information on Flag State Implementation of ECDIS

Section 3: ECDIS Training

Section 4: Technical aspects of electronic charts

Section 5: Appendix: References, glossary, further reading

This document may be downloaded from the IHO website at www.iho.int. Some national hydrographic offices may also provide this capability.

Some national hydrographic offices may provide this document in local languages for example, French, Spanish, and Japanese.

Document History

This is the first edition of S-66 “Facts about Electronic Charts and Carriage Requirements”. It is an adoption, with some revisions, of the 2nd edition (2007) of the document of the same name prepared by Hydrographic Offices from the Primar and IC-ENC Regional ENC Coordination Centres (RENCs).

Copyright and Reproduction

This document may be reproduced in whole or in part provided that all extracts quoted are reproduced verbatim without adaptation and the source and its date are stated. The IHO should be acknowledged as the publisher.
Feedback

Feedback from readers on any aspect of the document is welcome.
Send feedback to:

info@ihb.mc

or

Bureau Hydrographique International
4, quai Antoine 1er
B.P. 445
MC 98011 MONACO CEDEX
PRINCIPAUTE DE MONACO

Document History

This document was originally produced by Hydrographic Offices from the two Regional ENC coordination Centres (RENCs), Primar and IC-ENC. In 2008 the 2nd edition of the publication, produced by the Primar and IC-ENC Joint Information Working Group (JIWG), was adopted by the IHO. Following further revision it was published in January 2010 as IHO publication S-66.
Section 1: Overview of Electronic Charting and Regulations

What is an electronic chart display system?

An electronic chart display system is a general term for all electronic equipment that is capable of displaying a vessel’s position superimposed on a chart image displayed on a computer screen.

There are two classes of electronic chart display system. The first is an ECDIS (Electronic Chart Display and Information System), which can meet IMO/SOLAS chart carriage requirements. The second is an ECS (Electronic Chart System), which can be used to assist navigation, but does not meet IMO/SOLAS chart carriage requirements.

ECDIS

ECDIS equipment is specified in the IMO ECDIS Performance Standard (see Resolution MSC.232(82) as follows:

Electronic Chart Display and Information System (ECDIS) means a navigation information system which, with adequate back up arrangements, can be accepted as complying with the up-to-date chart required by regulation V/19 & V/27 of the 1974 SOLAS Convention as amended".

Where the term ECDIS is used in this document, it means those navigational electronic chart systems, that have been tested, approved and certified as compliant with the IMO ECDIS Performance Standard and other relevant IMO Performance Standards and thus are compliant with the ECDIS chart carriage requirements contained in SOLAS Chapter V.

ECS

ECS is specified in ISO 19379 as follows:

ECS is a navigation information system that electronically displays vessel position and relevant nautical chart data and information from an ECS Database on a display screen, but does not meet all the IMO requirements for ECDIS and is not intended to satisfy the SOLAS Chapter V requirements to carry a navigational chart.

ECS equipment ranges from simple hand held GPS enabled devices to sophisticated stand-alone computer equipment interfaced to ship systems.

Where are the rules for professional marine navigation written down?

The International Maritime Organization (IMO) is the United Nations organisation that is concerned with maritime transportation. The 1974 Convention on the Safety of Life at Sea (SOLAS), together with subsequent amendments, has been adopted by the Member States of the IMO. Chapter V of SOLAS specifies the requirements for the navigational equipment to be used onboard ships entitled to fly the flag of a party to the SOLAS Convention.

IMO Member States are obliged to adopt IMO rules and regulations, such as those in SOLAS, into their national legislation. However, only when the requirements of the Convention have been incorporated into national legislation do they take effect for the individual ships registered by that State. This process of incorporation into national legislation may vary from a few months to several years.

The State in which a ship is registered and hence which flag it is flying is known as the Flag State. It is the national maritime administration representing the Flag State that controls the ship’s adherence to the SOLAS carriage requirements (Flag State control).
The national maritime administration is also responsible for Port State control. Ships arriving at a port may be subject to Port State control by local officials (Port State Control Officers – PSCO’s). Port State control is based on Flag State regulations and international agreements. Port States cooperate within regions to apply consistent standards; for example, the European nations and Canada cooperate under the umbrella of the Paris Memorandum of Understanding (Paris MOU).

What are the IMO requirements that apply to the carriage of nautical charts?

What is a nautical chart?

Nautical charts are special purpose maps specifically designed to meet the requirements of marine navigation, showing amongst other things depths, nature of the seabed, elevations, configuration and characteristics of the coast, dangers, and aids to navigation.

Nautical charts provide a graphical representation of relevant information to mariners for executing safe navigation.

Nautical charts are available in analogue form as paper charts, or digitally as electronic charts.

The requirements for the carriage of nautical charts are laid down in SOLAS Chapter V.

The relevant regulations are:

- Regulation 2, which defines the nautical chart,
- Regulation 19, which specifies the equipment (including charts) to be carried on different types of ships, and
- Regulation 27, which specifies the requirement to keep charts and publications up to date.

IMO SOLAS V/2 1974 (as amended):

2.2 Nautical chart or nautical publication is a special-purpose map or book, or a specially compiled database from which such a map or book is derived, that is issued officially by or on the authority of a Government, authorized Hydrographic Office or other relevant government institution and is designed to meet the requirements of marine navigation.

IMO SOLAS V/19 1974 (as amended):

A revised version of SOLAS V/19 will come into force on 1 January 2011. Both the current (2009) and revised versions are presented here:

Text until December 31st 2010:

2.1 All ships irrespective of size shall have:

2.1.4 nautical charts and nautical publications to plan and display the ship’s route for the intended voyage and to plot and monitor positions throughout the voyage; an electronic chart display and information system (ECDIS) may be accepted as meeting the chart carriage requirements of this subparagraph;

Text from January 1st 2011:

2.1 All ships irrespective of size shall have:

2.1.4 nautical charts and nautical publications to plan and display the ship’s route for the intended voyage and to plot and monitor positions throughout the voyage. An electronic chart display and information system (ECDIS) is also accepted as meeting the chart carriage requirements of this subparagraph. Ships to which paragraph [2.10] applies shall comply with the carriage requirements for ECDIS detailed therein;’’;
2.1.5 back-up arrangements to meet the functional requirements of subparagraph 2.1.4, if this function is partly or fully fulfilled by electronic means*;

Footnote to regulation 2.1.4

* Paper nautical charts sufficient to meet the requirements of sub-paragraph .4 and regulation 27 may be used as a back-up arrangement for ECDIS. Other back-up arrangements for ECDIS are acceptable (see Appendix 6 to resolution MSC.232 (82), as amended).

IMO SOLAS V/27 (as amended):

Nautical charts and nautical publications, such as sailing directions, lists of lights, notices to mariners, tide tables and all other nautical publications necessary for the intended voyage, shall be adequate and up to date.

The three regulations referred to above show that depending on the class of vessel, the carriage requirement for charts can be fulfilled by:

- Carriage of official and up to date paper charts, or
- Carriage of a type-approved ECDIS (in accordance with the requirements of the IMO ECDIS Performance Standards) supplemented by an appropriate back up arrangement, and up to date Electronic Navigational Charts (ENC).

What kinds of electronic charts are available?

There are two types of electronic chart – raster charts and vector charts. A raster chart is a scanned and passive image of a paper chart, whereas a vector chart is a digital database of all the objects (points, lines, areas, etc.) represented on a chart. See Section 4 for further technical details.

Example of a raster chart
What are official charts?
According to SOLAS V (see page 7), charts issued by or on the authority of a Government, authorized Hydrographic Office or other relevant government institutions are official and may be used to fulfil carriage requirements (provided they are kept up to date).

All other nautical charts are by definition not official and are often referred to as unofficial or private charts. These charts are not accepted as the basis for navigation under the SOLAS Convention.

There are two kinds of official digital nautical charts commonly available; Electronic Navigational Charts (ENC) and Raster Navigational Charts (RNC).

What is an ENC?
ENC stands for “Electronic Navigational Chart”. An ENC is a vector chart, issued by or on behalf of a Governmental body (see “official chart” above) that complies with the IHO ENC Product Specification that is part of the chart data transfer standard known as S-57. Any other vector chart data is unofficial and therefore does not meet the SOLAS chart carriage requirements.

ENCs have the following attributes:

- ENC content is based on source survey data from the relevant hydrographic offices or the data shown in the official paper charts;
- ENCs are compiled and encoded according to the international standards set by the IHO;
- Positions on ENCs are referred to the World Geodetic System 1984 Datum (WGS84). This is directly compatible with GNSS positions;
ENCs are issued only by or on the authority of a Government, authorized Hydrographic Office or other relevant government institutions; and

ENCs are regularly updated with official update information that is normally distributed digitally.

See section “Meeting carriage requirements for ECDIS” below and Section 4 for further details.

How do I recognise an ENC?

When I am buying

Only authorized user service providers and their distributors sell ENCs; the delivery of update information is an essential part of their services. These user service providers are appointed either directly by the originating Hydrographic Office or by a Regional ENC Coordinating Centre (RENC) acting on behalf of its participating Hydrographic Offices.

When used in an ECDIS

An ECDIS distinguishes ENC data from unofficial data. When unofficial data is used, ECDIS provides mariners with a continuous warning on the screen that they must navigate by means of an official, up to date, paper chart.

If unofficial data is displayed on ECDIS, its boundaries are identified by a special line style - a “one-sided” RED line with the diagonal stroke on the side of the line containing the unofficial data.

![ENC data displayed on an ECDIS](image)

Boundary between ENC and unofficial data
The mariner can also select the appropriate ECDIS function that interrogates the chart display to obtain the chart details, such as information on the data originator, edition number and status of updating.

What ENCs are available?

The International Hydrographic Organization (IHO) provides an interactive web catalogue at www.iho.int that shows the availability status of ENCs worldwide. The catalogue has links that guide users to ENC suppliers and distributors.

The illustration below shows the front page of the catalogue.

![IHO online catalogue for coverage and availability of ENC and RNC](image)

How are ENCs protected from Unauthorised Changes?

The majority of ENCs are made available to the end-users in a protected form using the IHO S-63 ENC data protection scheme. S-63 protection ensures the integrity of the ENC data in all transactions between the service provider and the end-user. The protection scheme enables an ECDIS to confirm the authenticity of the supplied information.

S-63 defines the mechanism for encrypting ENC information and applying a digital signature to enable authentication of the chart data by an ECDIS. ECDIS users require an individual decryption key to access and view the ENC data protected by the S-63 scheme. Each ENC chart is encrypted with a different key. The decryption keys are provided to the end-user as ‘Cell Permits’ by the ENC service provider who sells the ENCs. Decryption keys are unique and apply to specific end-user systems. As a consequence, they cannot be exchanged or shared between different ECDIS installations.

The operation of the ENC protection scheme should not add any operational overhead for ECDIS users. All aspects of ENC decryption and authentication should be handled automatically by the chart system. An ECDIS user will occasionally receive new Cell Permits from their service provider when their ENC subscription is renewed or there are changes to the ENC chart outfit.
The updated Cell Permits must be imported into the ECDIS to enable it to automatically process new ENC deliveries and updates.

A few national hydrographic offices distribute their ENCs without using encryption. All ECDIS are able to access and display these unencrypted ENCs.

Are there other ways that ENCs can be distributed?

As well as distributing ENCs in the IHO S-57 format, the IHO has approved the distribution of ENCs in the internal “machine-formats” of individual ECDIS manufacturers. The generic name for this form of distribution is *SENC distribution* (System-ENC distribution). SENC distribution can improve the speed of loading ENC-data in some ECDIS equipment. The IHO requirements are that service providers using SENC-distribution must have the agreement of the Hydrographic Offices that originates the ENCs, and must use type approved processes to ensure that the integrity of the S-57 format ENC data is maintained during the conversion to a SENC format.

What is an RNC?

RNC means “Raster Navigational Chart”. RNCs are digital raster copies of official paper charts. RNCs conform to IHO Product Specification S-61. In accordance with the SOLAS V definition of a nautical chart, RNCs can only be issued by, or on the authority of, a Government, authorized Hydrographic Office or other relevant government institution.

RNCs have the following attributes:

- RNCs are a facsimile of official paper charts;
- RNCs are produced according to the international standards set by the IHO;
- RNCs are regularly updated with official update information. This is distributed digitally.

The IMO performance standards for ECDIS states that where ENCs are not available, RNCs may be used in ECDIS to meet the chart carriage requirements. However, when an ECDIS is being used with RNCs, the RNCs should be used together with “an appropriate folio of up to date paper charts”. See section “Meeting carriage requirements for ECDIS”.

The option to use RNCs in ECDIS will steadily reduce as more and more ENCs become available.

Because of their nature, RNCs when used in ECDIS do not provide the same level of functionality that is provided by ENCs. The limitations of operating with RNCs are outlined in IMO SN Circulars 207/Rev.1 and 255 (see Annex to this section).

How are ENCs and RNCs kept up to date?

In order to meet the requirements of SOLAS V/27, nautical charts must be kept up to date by incorporating Notices to Mariners and other chart updates issued by Hydrographic Offices.

ENCs and RNCs are normally kept up to date by applying regular, update information to the chart data via a digital data file. The update file may be transferred by wireless transmission, or on a suitable media, such as a CD-ROM. In these cases the updating of the chart database is done automatically by the ECDIS. Another standard function of ECDIS is the capability to update the ENC manually. This may be required when a digital update is not available or a hydrographic office has issued update information in a non-digital form.

At present most ENC and RNC updates are supplied to ships on CD-ROM but ‘remote updating’ using satellite (or, when in port, shore based) telecommunications is becoming more and more common. A number of ENC service providers already have updating services using e-mail, the worldwide web and other means. Details may be obtained from ENC distributors.
Is it possible to check that all updates have been applied to an ENC?

Updates to ENCs are sequential. The sequence is unique to each ENC. During the updating process ECDIS always checks that all updates in the sequence have been applied. If an update is missing then the ECDIS will indicate this. It is not possible to load later updates until any earlier updates have been applied.

An ECDIS maintains an internal list of the updates that have been applied and the date of their application. In some systems this list can be checked on screen or printed out to check the update status of the ENCs that have been loaded. If ECDIS is not able to show the list, ECDIS users should create and maintain a list of updates manually. ENC distributors should be able to provide mariners with details of the latest ENC edition and update numbers in force. It is also possible to refer to traditional sources of update information, such as Notices to Mariners for paper charts, to cross-check and verify that corresponding ENC updates have been applied.

Port State Control officers are likely to refer to the update listing function of ECDIS to verify that ENCs are being kept up to date in accordance with SOLAS V Regulation 27.

What is ECDIS?

ECDIS equipment is specified in the IMO ECDIS Performance Standards (IMO Resolution MSC.232 (82) as follows:

Electronic Chart Display and Information System (ECDIS) means a navigation information system which, with adequate back up arrangements, can be accepted as complying with the up-to-date chart required by regulation V/19 & V/27 of the 1974 SOLAS Convention, as amended, by displaying selected information from a system electronic navigational chart (SENC) with positional information from navigation sensors to assist the mariner in route planning and route monitoring, and if required display additional navigation-related information.

ECDIS is a ship borne navigational device and as such the rules governing its use come under the jurisdiction of the IMO through SOLAS. The IMO has adopted performance standards for ECDIS (IMO Resolution MSC.232 (82) and subsequent amendments). ECDIS equipment must be certified as meeting these performance standards if it is to be used to meet the chart carriage requirements of SOLAS V/19. Certification of ECDIS equipment is achieved through type-testing and certification.

Within an ECDIS, the ENC database contains chart information in the form of geographic objects represented by point, line and area shapes, carrying individual attributes. Appropriate mechanisms are built into the ECDIS to query the data, and then to use the information to perform various navigational and monitoring functions (such as, anti-grounding surveillance) and to generate a chart-like display.

The presentation of ENC data on a screen display is specified in IHO standard S-52 “Specification for Chart Content and Display Aspects of ECDIS”. The style of presentation defined in S-52 is mandatory.

How is an ECDIS approved and by whom?

To meet SOLAS requirements an ECDIS must be certified to show it conforms to the IMO Performance Standard for ECDIS. This is achieved through the type approval and certification processes recognised by the relevant Flag State.

Type approval is normally conducted by recognized technical organisations or by marine classification societies approved by Flag States. However in some countries the maritime administration conducts type approval themselves. Many European governments have agreed to mutual recognition of their ECDIS type approval certificates – indicated by the so-called “Wheel
Mark” sign which indicates conformity with the Maritime Equipment Directive of the European Union (MED).

ECDIS type approval testing is conducted using test standards and procedures developed by the International Electro-technical Commission (IEC). These are based on the IMO Performance Standard for ECDIS and the supporting IHO standards (IHO S-52, S-57, S-63). The IEC testing standard for ECDIS is IEC 61174.

Is there a need to keep ECDIS software updated?

If ECDIS software is not upgraded to read ENCs based on the latest version of the ENC Product Specification or to use the latest version of the S-52 Presentation Library then the ECDIS may be unable to correctly display the latest approved chart symbols. If an ECDIS is unable to interpret and draw any newly introduced chart symbol it will display a question mark (?) instead. Additionally there will be a possibility that alarms and indications for any newly introduced features may not be activated even though they have been included in the ENC. Because of this, the IMO have issued guidance on the maintenance of ECDIS software in Sn.1/Circ.266.

ECDIS users should ensure that their ECDIS software always conforms to the latest IHO standards. This should be available from the “about” function in the software or from the ECDIS manufacturer. A list of the current IHO standards relevant to ECDIS software is maintained in the ENC/ECDIS section of the IHO website (www.iho.int).

Is there a mandatory requirement to carry ECDIS?

In July 2002 an amendment to Chapter V of SOLAS came into force. This amendment included a specific reference to ECDIS and stated that it

... may be use to fulfil the chart carriage requirements of Regulation 19.

A further amendment to Regulation, 19 adopted in June 2009 and due to come into force on 1 January 2011, requires that certain classes of vessel use ECDIS to meet the SOLAS V chart carriage requirements as follows:
Flag state authorities may exempt ships from the requirements shown above if those ships will be taken permanently out of the service within two years after the implementation dates shown for other ships of the same class.

In addition to SOLAS V/19, ECDIS has already been fixed as the chart carriage requirement in the High Speed Craft Code of IMO (HSC). In December 2006 the 82nd session of the Marine Safety Committee (MSC82) agreed amendments to 1994 and 2000 HSC Code with regard to ECDIS:

... *High-speed craft shall be fitted with an ECDIS as follows:*

<table>
<thead>
<tr>
<th>New vessels</th>
<th>Existing vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>craft constructed on or after 1 July 2008</td>
<td>craft constructed before 1 July 2008, not later than 1 July 2010.</td>
</tr>
</tbody>
</table>

Meeting Carriage Requirements with ECDIS

Only a type-approved ECDIS operating with up to date ENCs and with appropriate back up arrangements may be used to replace paper chart navigation. Where ENCs are not available, the SOLAS regulations allow Flag States to authorise the use of RNCs (together with an appropriate folio of paper charts) - see below. In all other cases the vessel must carry all the paper charts necessary for its intended voyage.

Back-up Requirements

No electronic system can be completely failsafe. The IMO Performance Standard for ECDIS therefore requires that the “overall system” includes both a primary ECDIS and an adequate, independent back up arrangement that provides:

- *Independent facilities enabling a safe take over of the ECDIS functions in order to ensure that a system failure does not result in a critical situation; and*

- *A means to provide for safe navigation for the remaining part of the voyage in case of ECDIS failure.*

However, these rather basic statements allow for considerable flexibility. This means that there can be various interpretations as to what are the minimum functional requirements, or what constitutes "adequate" back up arrangements.

There are two commonly accepted options:

- A second ECDIS, connected to an independent power supply and a separate GPS position input;

- Up to date paper nautical charts sufficient for the intended voyage

Some Flag States may, however, permit other options (for example; radar-based systems such as "Chart-Radar"). Ship owners should consult their national maritime administration for specific guidance.

At the request of IMO, the IHO has sought information from its member states on which paper charts covering their territorial waters would be considered as *appropriate* to serve as a back up to ECDIS. This information is presented on the IHO web site as part of the ENC coverage catalogue.
What to do in areas without ENC coverage?

In 1998 the IMO recognised that it would take some years to complete global coverage of ENCs. As a consequence, the IMO ECDIS Performance Standard was amended by adding a new optional mode of operation for ECDIS - the Raster Chart Display System (RCDS) mode. In this mode Raster Navigational Charts (RNCs) can be used in ECDIS to meet the SOLAS carriage requirements for nautical charts. However, this is only allowed if approved by the Flag State of the ship concerned. The intention of the change was to provide the widest possible coverage of official electronic chart data for ECDIS in advance of complete global coverage with ENCs alone.

IMO took note of the limitations of RNCs as compared to ENCs (see IMO SN Circular 207/Rev.1 at Annex). As a consequence, the revised ECDIS Performance Standard requires that when the RCDS mode is employed an ECDIS must be used together with “an appropriate folio of up to date paper charts”.

The following definition of an appropriate folio of up to date paper charts (APC) was established by MSC within appendix 7 of Resolution 232(82):

Appropriate Portfolio of up to date paper Charts (APC) means a suite of paper charts of a scale to show sufficient detail of topography, depths, navigational hazards, aids to navigation, charted routes, and routeing measures to provide the mariner with information on the overall navigational environment. The APC should provide adequate look-ahead capability. Coastal States will provide details of the charts which meet the requirement of this portfolio, and these details are included in a worldwide database maintained by the IHO. Consideration should be given to the details contained in this database when determining the content of the APC.

While paper charts are to be used with RNCs, the underlying intention was, nevertheless, to minimise the number of paper charts carried by a vessel when the RCDS mode was employed, but only to a level compatible with safe navigation. As stated in the Resolution (see quote above), ship owners should consult their Flag State regarding whether RCDS mode is allowed and under what conditions.

A web-based catalogue showing world coverage of all ENCs and RNCs is available on the IHO website.

In any areas where neither ENCs nor RNCs are available vessels must carry all the paper charts necessary for the intended voyage.
Does your ECDIS system meet IMO chart carriage requirements?

ECDIS Carriage Requirements – a summary:

<table>
<thead>
<tr>
<th>Are ENCs available for area of operation?</th>
<th>YES</th>
<th>NO</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>What Digital Charts are being used in the ECDIS by the mariner?</td>
<td>ENC (coverage at an appropriate scale for navigation)</td>
<td>RNC (coverage at an appropriate scale for navigation)</td>
<td>RNC</td>
<td>Private charts (6)</td>
</tr>
<tr>
<td>What back up system is required?</td>
<td>Independent ECDIS or other back up solution required</td>
<td>None required (3)</td>
<td>None required (3)</td>
<td></td>
</tr>
<tr>
<td>What are the requirements for the carriage of Official paper charts?</td>
<td>None needed (1) (except if back up is a folio of paper charts)</td>
<td>An “appropriate” folio of up to date paper charts to be used in conjunction with the ECDIS in RCDS mode</td>
<td>All up to date paper charts required for safe navigation in areas where ENCs are available</td>
<td>All up to date paper charts required for safe navigation for the intended voyage</td>
</tr>
<tr>
<td>How is the ECDIS operating?</td>
<td>As an ECDIS</td>
<td>As an ECDIS in RCDS mode</td>
<td>As an ECDIS in RCDS mode</td>
<td>As an ECS</td>
</tr>
<tr>
<td>Does the ECDIS fulfil Chart Carriage Requirements?</td>
<td>YES (1)</td>
<td>YES (2)</td>
<td>NO (4)</td>
<td>NO (5)</td>
</tr>
</tbody>
</table>

Notes:
1) Some Flag States may require specific documentation to allow this.
2) Requires approval of vessel’s Flag State – Flag State defines meaning of ‘appropriate’
3) Back up system is only required if ECDIS is intended to meet carriage requirements
4) For ECDIS to fulfil Carriage requirements vessels must use ENCs where these are available
5) Paper charts (not the ECDIS) must remain the primary means of navigation
6) If private charts are used in an ECDIS the system is regarded as operating as an ECS. ECDIS operating as ECS, ECS systems meeting RTCM or IEC standards or Private charts meeting ISO standards being used in ECDIS do not meet IMO chart carriage requirements.

It should be noted that interpretations between Flag State administrations may vary. Additionally in some countries Flag State administrations will require to check the equipment on board before issuing any certificates. Prospective ECDIS users should consult the vessel’s Flag State administration for detailed information.

Can chart format names indicate carriage compliance?

There has been much confusion regarding the names used to describe electronic chart distribution formats. The diagram below is intended to clarify this. From the diagram it can be seen that the same distribution format can be used for the delivery of both private and official chart data. For example, ‘BSB’ is the term used for the distribution format of US and Canadian RNCs. The same term is also used for the distribution of private raster chart data in other areas (for example, in European waters).

There can also be confusion with ENCs. Private vector chart data delivered in S-57 format does not meet IMO requirements and should never be described as an ENC. Similarly private vector data delivered in a SENC format can be mistaken as being ENCs delivered in the same SENC format.
The most important factor to consider in determining whether data is official is the source rather than the format. The source or originator determines the status and the purpose for which the chart data may be used. The combination of the status of the chart data and the functionality of the particular device finally determines whether an electronic chart navigation “system” is operating as an ECDIS or as an ECS.

Examples of Electronic Chart Formats. Many ECS systems are able to use ENC or RNC data, however even when using official charts they may not be used to fulfil ECDIS carriage requirements in accordance with SOLAS chapter V.

Examples of format names used by private data producers:
- CM93 chart data produced by Jeppesen Marine (previously known as C-Map)
- TX90 vector chart data produced by Transas
- BSB Raster chart format used by, for example, the USA and Canada

Acceptance of ECDIS by Port State Control Authorities

Ships arriving at a port are normally subject to Port State control. This is enforced by local officials (Port State Control Officers (PSCO’s)) who refer to the relevant Flag State regulations and international agreements. Nations have formed a number of regional groups to ensure consistent application of Port State control.

In Europe, Port State control follows the guidance set out in the Paris Memorandum of Understanding. Its ECDIS guidelines explain how a PSCO should assess whether a ship is using electronic charts in accordance with SOLAS requirements. Checks may include whether:

- The ship has documentation indicating that the ECDIS complies with the IMO Performance Standards. In the absence of such documentation, the PSCO should seek confirmation from the Flag State that the ECDIS does meet the statutory requirements;
- The ECDIS is being used for primary navigation. It should be established if the ECDIS is used in the ENC mode or RCDS mode or in both modes;
- There are written procedures onboard the vessel for using ECDIS;
- The master and watch-keeping officers are able to produce appropriate documentation that generic and type-specific ECDIS familiarisation has been undertaken;
- The ENCs (and any RNCs) used for the intended voyage are up to date; and
- There are approved back-up arrangements available to ensure a safe transfer of the ECDIS functions in the event of an ECDIS failure and to provide safe navigation for the remaining part of the voyage.

Is there a need for ECDIS training?

ECDIS is far more than the image of a chart displayed on an electronic screen. ECDIS is a highly sophisticated system which, besides the navigational functions, includes components of a complex, computer-based information system. In total, the system includes hardware, operating system, ECDIS software (kernel and user interface), sensor input interfacing, electronic chart data, rules for presentation and display, status and parameters of alarms and indications, etc. All these items are accessed through an appropriate human-machine interface. As such, care must be taken when navigating with ECDIS to avoid

- Incorrect operation
- Misinterpretation
- Malfunction or, even worse,
- Over-reliance on this highly-automated navigation system

As with any type of shipboard navigation equipment, it can only be as good as those who use it and what it is being used for. In the case of ECDIS and ENCs, if the mariner is well trained then the system will provide the relevant information that the mariner needs to make good decisions and thereby contributes significantly to safe and efficient navigation. Stated another way, an ECDIS is another tool to enable mariners to perform their job better. However, just having some “knowledge” about “functions” and “operational controls” is insufficient to maximise the benefits of ECDIS; proper training is absolutely necessary.

What are the requirements for ECDIS training?

ECDIS and other electronic charting systems have become increasingly important in ship navigation and are already widely used either as a primary navigation tool or as an aid to navigation. The systems are increasingly complex, and require adequate and appropriate training in order to be operated correctly and safely. Without proper training, these systems will not be used to their full potential and could under some circumstances increase the hazard to navigation. The IMO STCW (Standards of Training, Certification and Watch-keeping) and ISM (International Safety Management) codes put the responsibility firmly on the ship-owner to ensure that mariners on their vessels are competent to carry out the duties that they are expected to perform. If a ship is fitted with ECDIS, the ship-owner has a duty to ensure that users of such a system are properly trained in its operation and use before using it operationally at sea.

There is currently (2009) no specific regulation or reference to ECDIS systems in the STCW Code. However, since ECDIS is recognised under SOLAS as a carriage requirement, all references to training and competency in the use of mandatory systems or equipment apply equally to ECDIS. IMO is currently revising the STCW code and it is expected that specific requirements for ECDIS will be added in 2010.

The current STCW 95 Convention deals with both electronic and paper charts at the same functional level. This is indicated by Table A-I I-1 (Specification of minimum standard of competence for officers in charge of a navigational watch on ships of 500 gross tonnage or more) where it is stated “ECDIS systems are considered to be included under the term “charts””.
To encourage effective ECDIS education, the IMO has approved a syllabus for a standardised model course for the general operation and use of ECDIS (IMO Model Course 1.27). Courses based on this syllabus are offered by approved training institutions and maritime academies. Maritime administrations can provide information on approved institutions. Some Flag States have developed their own training courses in ECDIS in order to be able to recognise the training certificates.

Type specific ECDIS training is normally available from the equipment manufacturer.

Further information on ECDIS training can be found in Section 3 of this document.

What are the operational considerations when using ECDIS?

The IMO has recognised that the adoption of a carriage requirement for ECDIS from 2012 is a very significant change for the shipping industry and that there will need to be a careful transition both within the ship operating companies, and onboard the ships of their fleet. In 2008 the IMO issued a Safety of Navigation Circular on "Transitioning from paper chart to ECDIS navigation" (see Annex 3 below).

Navigating with ECDIS is fundamentally different from navigating with paper charts. Important bridge work-processes are significantly affected, in particular, the voyage planning and voyage execution tasks. These differences require careful analysis and consideration.

Voyage Planning

ECDIS provides a number of additional planning functions and features such as the use of safety contours, various alarms and indications, and click-and-drop facilities for designating waypoints and markers. Whilst in many ways ECDIS makes voyage planning easier, it is still possible to make errors. However these errors are likely to be of a different type to those encountered when using paper charts.

Even though ENC coverage is increasing rapidly, many vessels will, to some degree, have to operate a dual, or even triple, system with a voyage covered by various combinations of ENCs, paper and raster charts. The planning and validation of an intended voyage has therefore to consider issues such as which chart types are available for the various segments of that voyage. The format of the voyage plan is likely to differ from the traditional alphanumeric lists of waypoints used with paper charts and should include information on the usability of connected electronic navigational devices such as GPS and AIS and their actual alarm settings.

It is essential to make use of the in-built automatic checking functions provided by ECDIS when validating and approving the voyage plan. Thought also needs to be given to ensuring that a backup to the voyage plan on the ECDIS is available in case of equipment failure of the ECDIS or the connected sensors.

It is important that there is a good understanding of the voyage plan by all bridge officers so that they are prepared for the intended voyage. This should include information on equipment status and backup procedures.

Voyage execution

- At the beginning of a voyage, as well as at any change of watch, officers should review the voyage plan and agree the selected pre-settings of functions, alarms and indicators to be used on the ECDIS.

- Where vessels carry paper charts as well as an ECDIS, the role of the ECDIS and the charts should be considered. If the ECDIS is used for real time navigation, the statutory
requirements regarding monitoring of the progress of the voyage and marking of positions will need to be considered:

- Are positions marked on paper charts solely for record keeping purposes?
- What steps are being taken to ensure that intended tracks marked on the paper charts correspond with the ECDIS information?
- Have the bridge procedures set in place by the shipping company been adapted for the use of ECDIS and are all persons concerned with the navigation familiar with these adjustments?

Over reliance on ECDIS

There is a tendency to put too much trust in computer-based systems and, in the case of ECDIS, to believe implicitly in whatever is shown on the chart display. It is essential that officers remember to cross check the displayed information by all means available; especially by visual observation and comparison from the bridge window and by watching the radar. Bridge-procedures must be adapted appropriately and ENC training must be carried out to minimise the potentially adverse consequences.

What is ECS?

All electronic charting systems, which are not tested and certified as meeting the IMO ECDIS Performance Standards, are generically designated as "Electronic Chart Systems" (ECS). An ECS may be able to use ENCs, RNCs or other chart data produced privately and could have functionality similar to ECDIS.

Some ECDIS and ECS equipment manufacturers also produce private vector and raster data to use in their products. These private charts are usually derived from Hydrographic Office paper charts or Hydrographic Office digital data but these derived charts have no official status.

Hydrographic Offices do not take any responsibility for the accuracy or reliability of privately produced charts. Where a vessel operates with ECS, the paper chart remains the only officially recognised basis for navigation onboard. In these circumstances a vessel must retain and use a full folio of up to date paper charts onboard, regardless of the type of electronic charts used.

Because ECS is not intended to meet SOLAS chart carriage requirements, there is no IMO Performance Standard for ECS.

The STCW and ISM codes place the responsibility firmly on the ship-owner to ensure that mariners on their vessels are competent to carry out the duties that they are expected to perform. If a ship has an ECS fitted for use and it is being used as an aid to navigation, the ship-owner has a duty to ensure that users of such a system are properly trained in its use before employing it operationally at sea, are aware of its limitations compared to ECDIS and the need to use paper charts to fulfil the SOLAS chart carriage requirements.

Relevant IMO SN/ Circulars:

- **IMO SN/ Circ.207/Rev.1**: Differences between RCDS and ECDIS
- **IMO SN/ Circ. 255**: Additional guidance on chart datum and accuracy of position on charts
- **IMO SN/ Circ. 276**: Transitioning from paper chart to Electronic Chart Display and Information Systems (ECDIS) navigation
Section 2: List of Flag State Authorities

Note: This list is not exhaustive

<table>
<thead>
<tr>
<th>Nation</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbados</td>
<td>http://www.barbadosmaritime.com/index2.html</td>
</tr>
<tr>
<td>Bermuda</td>
<td>www.bermulashipping.bm</td>
</tr>
<tr>
<td>Cayman Islands</td>
<td>www.cishipping.com</td>
</tr>
<tr>
<td>Denmark</td>
<td>http://www.dma.dk/Sider/Home.aspx</td>
</tr>
<tr>
<td>Germany</td>
<td>http://www.bsh.de/en/Maritime_shipping/Commercial_shipping/International_Shipping_Register_(ISR)/index.jsp</td>
</tr>
<tr>
<td>India</td>
<td>http://shipping.gov.in/</td>
</tr>
<tr>
<td>Japan</td>
<td>http://www.mlit.go.jp/index_e.html</td>
</tr>
<tr>
<td>Korea, Republic</td>
<td>http://www.krs.co.kr/eng/index.html</td>
</tr>
<tr>
<td>Norway</td>
<td>http://www.nis-nor.no/</td>
</tr>
<tr>
<td>Country</td>
<td>Website</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Poland</td>
<td>http://www.prs.pl/</td>
</tr>
<tr>
<td>St Kitts & Nevis</td>
<td>http://www.stkittsnevisregistry.net/</td>
</tr>
<tr>
<td>Sweden</td>
<td>http://www.sjofartsverket.se/default_603.aspx</td>
</tr>
<tr>
<td>Thailand</td>
<td>http://vigoportal.mot.go.th/portal/site/PortalMOTEN/menuitem.80f2d481c1bccaad4217ba02506001ca/</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>http://www.mcga.gov.uk</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>http://vanuatuships.com/content/view/107/43/</td>
</tr>
</tbody>
</table>

Updated on 19.11.2009
Section 3: ECDIS Training

Required Documentation for ECDIS Training

To check the knowledge and competency of ECDIS and its proper use, the European Union has provided “Guidelines for Port State Control on Electronic Charts (Paris Memorandum of Understanding)”. These guidelines seek to determine, for both ENC and RCDS mode:

“Are the master and deck watchkeeping officers able to produce appropriate documentation that generic and type-specific ECDIS familiarisation has been undertaken?”

Training Objectives

The overall objective of ECDIS training is to enhance navigation safety. In rather general terms, this includes

- Safe operation of the ECDIS equipment
 - Use of the functions for route planning and monitoring
 - Proper action in case of any malfunction

- Proper use of ECDIS-related information
 - Selection, display, and interpretation of relevant information
 - Ambiguities of data management (such as “datum”)
 - Assessment of alarms and indications

- Awareness of ECDIS-related limitations
 - Errors of displayed data and their interpretation
 - Real and potential limitations
 - Over-reliance on ECDIS

- Knowledge of legal aspects and responsibilities related to electronic charts
 - Awareness of the status of ECDIS and ECS; of official and non-official data
 - Limitations of RCDS mode

In order to achieve these objectives, the mariner must acquire a thorough knowledge and functional understanding of the basic principles governing ENC data, its proper display in ECDIS and its use with navigation sensors and their respective limits. For example, the Mariner must be familiar with the object-attribute structure and the feature-space relationship of ENC data as well as information and the impact of such things as “SCAMIN”, “overscale”, “update history”, “safety values” and “chart usage”.

ECDIS training must have an appropriate depth in theoretical aspects (ECDIS data and their presentation) as well as dealing with the proper use of ECDIS (functions and limitations). It should cover all safety-relevant aspects and go far beyond type-specific “button pressing” or basic operations. ECDIS training should be both generic and type-specific.

Ideally, training should cover the full extent of functions and procedures necessary to deal with a wide range of possible navigational problems. It should cover thorough route planning and both visual and automatic route monitoring in typical navigational situations and sea areas. To prepare
a user for practical operations, decision-making and alarm handling, real-time complex ECDIS simulator exercises should be conducted.

IMO Model Training Course - Operational Use of ECDIS

The IMO Committee on Standards for Training and Watch-keeping (STW) approved a standardised IMO “Model Training Course on the Operational Use of ECDIS” (Model Course 1.27). The primary objective of the Model Course is to ensure proper use and operation of ECDIS in terms of a thorough understanding and appreciation of its capabilities and limitations. The IMO Model Course contains four main parts

- Part A: Course framework,
- Part B: Course outline and time table,
- Part C: Detailed teaching syllabus, and
- Part D: Instructor manual.

There are also annexes dealing with proposals and examples of situations for the development of scenarios and of “errors of interpretation”.

The contents (syllabus) of ECDIS training are listed in the table below. They are based on the analysis of onboard navigational activities and include learning objectives at the operational as well as the management level (e.g. STCW Convention). In addition to providing specific learning objectives and detailed guidance on a range of subject areas, the Model Course also contains recommendations for facility and staffing requirements, entry standards, lesson plans, teaching aids, examples of ship-simulator training exercises that can be conducted, and certificates.

- **Legal aspects and requirements**
- **Main types of electronic charts**
- **ECDIS data**
- **Presentation of data**
- **Sensors**
- **Basic navigational functions**
- **Special functions for route planning**
- **Special functions for route monitoring**
- **Updating**
- **Additional navigational functions and indications**
- **Errors in displayed data**
- **Errors of interpretation**
- **Status information, warnings and alarms**
- **Voyage documentation**
- **System integrity monitoring**
- **ECDIS back-up**
- **Dangers of over-reliance on ECDIS**

The IMO Model Course 1.27 - *The Operational Use of Electronic Chart Display and Information System (ECDIS)* together with its annex and attachment is regarded as the minimum requirements a candidate should have gone through to receive an ECDIS certificate. It covers all relevant safety aspects and overall system knowledge. Governments are strongly recommended to ensure that
every officer in charge of a navigational watch is trained and certified in accordance with the objectives of the course.

Certification of ECDIS Education

The certificate should document that:

- The candidate has completed a course in the operational use of ECDIS (Electronic Chart Display and Information Systems), based upon the IMO Model Course 1.27 - *The Operational Use of Electronic chart Display and Information systems (ECDIS).*

- The course fulfils the requirements of IMO STCW-95.

The certificate should be issued by a government authority or a relevant body that is government approved.
Section 4: Technical Details of Electronic Charts

Official Electronic Chart Data

The term “Official”, indicates chart data that has been produced under the authority of a government organisation – in contrast to private, i.e. non-official electronic chart data which might be technically of the same type but has not been endorsed by a government authority. By definition, the terms ENC(s) and RNC(s) only refer to officially endorsed electronic charts.

Types of Official Chart Data

Electronic chart data is of two general types:

- Electronic Navigational Charts (ENC), and
- Raster Navigational Charts (RNC).

The inner construction of ENCs and RNCs is fundamentally different:

- ENCs are vector charts, and
- RNCs are raster charts.

Electronic Navigational Charts (ENCs)

General Principles

IMO’s definition for the Electronic Navigational Chart – ENC:

ENC means the database, standardized as to content, structure and format, issued for use with ECDIS on the authority of government-authorized Hydrographic Offices. The ENC contains all the chart information useful for safe navigation, and may contain supplementary information in addition to that contained in the paper, which may be considered necessary for safe navigation.

ENCs are vector charts comprising a database of individual geo-referenced objects extracted from a Hydrographic Office’s records including existing paper charts. When used in an ECDIS, the ENC content can be displayed as a seamless chart-like display at user selected scales. Due to the limited size and resolution of electronic displays the chart image generated from ENCs may not fully replicate the traditional appearance of a paper chart. This apparent shortcoming is more than compensated by the special operational functions of ECDIS which continuously monitors the ENC data content (rather than the display) to provide warnings of impending dangers in relation to a vessel’s position and its movement.

ENC Data Format

ENCs use the IHO S-57 data format which is the IHO Transfer Standard for Digital Hydrographic Data. S-57 generally describes the standards to be used for the exchange of digital hydrographic data between national Hydrographic Offices and for the distribution of digital data and products to manufacturers, mariners, and other data users. The current (2009) version of S-57 is edition 3.1.

ENCs use the World Geodetic System 1984 (WGS 84) as the horizontal datum reference. This makes most ENC s directly compatible with GPS. However, a few ENC s have been made from older non-WGS84 paper charts and a close match with GPS positions cannot be assured. These ENC s carry an extra warning that will be displayed in the ECDIS, such as "This chart cannot be accurately referenced to WGS84 Datum; see caution message". A typical caution message would be: "Positions in this region lie within ± nn metres of WGS84 Datum".
ENC Display

An ENC is a database of geographic entities. It does not contain any presentation rules.

Both the geo-referenced data objects contained in the ENC and the appropriate symbolisation contained in the Presentation Library are linked to each other in the ECDIS only when called up for display. The resulting image will change depending on the sea area selected, the intended display scale and the mariner’s pre-settings, such as the display mode best suited to the ambient light conditions, and other operational conditions.

The presentation rules for ENCs are contained in a separate ECDIS software module - the “Presentation Library”. The definition of the Presentation Library for ENCs is contained in Annex A of the IHO Publication S-52, Appendix 2 - *Colours & Symbols Specifications for ECDIS*. The use of the S-52 symbology and presentation rules is mandatory in all ECDIS.

The ECDIS Presentation Library follows, as much as possible the presentation and symbology used on a paper chart. This will avoid confusion during the extended period when paper charts, RNCs and ENCs will co-exist. However, the ECDIS display provides a much increased level of flexibility compared to a paper chart. This includes:

- Displaying/removing various types of chart and non-chart information;
- Selecting standard chart display or a thinned out display, and full or simplified symbols;
- Using cursor interrogation to obtain further detail not shown on the continuous display;
- Overlaying/removing radar video or radar target information (in order to: confirm ship’s positioning; aid radar interpretation; show the entire navigation situation on one screen);
- Overlaying/removing various other sensor information, or information transmitted from shore;
- Changing the scale or orientation of the display;
- Selecting true motion or relative motion;
- Changing screen layout with windowed displays, providing text information in the margins, etc.;
- Possibility of pull-down menus and other operator interaction devices being alongside the operational navigation display and so interacting with it;
- Giving navigation and chart warnings, such as: “too close approach to safety contour”; “about to enter prohibited area”; “over-scale display”; “more detailed (larger scale) data available” etc.;
- Possibly, a diagrammatic representation of a computer evaluation of grounding danger;
- Possibly, a diagrammatic representation of the immediate vicinity of the ship to aid in close quarters manoeuvring;

The ambient lighting on the bridge varies between the extremes of bright sunlight, which can wash out information on the ECDIS display, and night, when the light emitted by the display has to be low enough that it does not affect the mariner’s night vision. The colours and symbols specifications of S-52 have been designed to meet these more difficult requirements. ECDIS provides a negative image of the chart at night, using a dark background in place of the white background of the paper chart, in order not to impair night vision.
Three predefined colour schemes are provided:

- Day (white background)
- Dusk (black background)
- Night (black background)

The following illustrations show two of the colour schemes and the three standard selections of content i.e. Standard Display, Base Display and Full Display.
Use of ENCs in ECS

Many ECS are able to use ENCs. However, because an ECS, by definition, is not type-approved as meeting the ECDIS performance standards, the use of ENCs in an ECS does not satisfy the ECDIS carriage requirements of SOLAS.
ENC Distribution

The provision of a timely, reliable, worldwide and uniform ENC data distribution service is a major organisational challenge. The IHO developed the WEND (World-wide ENC Database) concept to meet these requirements. WEND consists of two components:

- A charter that describes the principles governing cooperation between the world’s Hydrographic Offices producing ENCs. Principles include:
 - The organisation responsible for the primary charting of an area is responsible for ENC production in that area;
 - The relevant IHO standards, especially S-57 must be followed; and
 - The rules of a recognised work quality assurance system (such as ISO 9000) should be applied to ENC production.

- A conceptual schema describing a network of Regional Electronic Chart Co-ordinating Centres (RENCs), where:
 - Each RENC takes responsibility in its area for the collation of ENCs and updates for the region;
 - Each RENC can offer an identical global dataset for ECDIS through the exchange of the regional datasets and their updates between all the RENCs, and
 - RENCs act as a wholesale outlet for ENCs. RENCs supply ENCs to commercial user service providers who - rather like paper chart distribution - tailor individual sets of chart data for the special needs of a shipping company or a particular ship.

To date, three RENCs – Primar, based in Norway and IC-ENC, based in the United Kingdom and Australia, are in operation. The RENC model has yet to be fully adopted by all ENC producing nations. A number of nations still distribute their ENCs individually either through individually appointed chart data suppliers or directly rather than through RENCs.

Because ENCs might be subject to unauthorised amendment or illegal copying, the IHO has adopted S-63 – The IHO Data Protection Scheme. This is the standard encryption protection for ENCs. Encryption is a complex technical procedure. S-63 defines the technical details of the encryption method and the operating procedures for the RENCs/chart data distributors and provides specifications that allow navigation equipment manufacturers to build S-63 compliant ECDIS.

What is a SENC?

In order to get efficient data structures that facilitate the rapid display of ENC data, most ECDIS convert each ENC dataset from S-57 into an internal machine-language format called SENC or System ENC – which is optimised for chart image creating routines. Each ECDIS software manufacturer has its own SENC format. Consequently the SENC format may differ between ECDIS manufacturers.

SENC Delivery

In order to take advantage of the efficiencies of delivering ENC data in a SENC format, the IHO has authorised an optional distribution mechanism called SENC delivery. This is in addition to the standard distribution of ENC in S-57 format. In this case, a RENC delivers the S-57 based ENCs to an authorized chart data distributor who then performs an ENC-to-SENC conversion (that otherwise would take place inside the ECDIS), and delivers the resultant SENC to the end user.
However, it is up to individual Hydrographic Offices to decide whether they wish to allow the ENCs for their waters to be distributed in SENC format in addition to S-57. Not all Hydrographic Offices allow their ENCs to be delivered by distributors as SENCs.

Official and Unofficial Data

An ECDIS can determine if data is from either an ENC or a private source by interrogating the Agency Code (a two character combination which is unique for any data producer) embedded in the data.

Using this code an ECDIS will warn mariners that they must navigate with an official up to date paper chart if data from a private source is in use. The ECDIS will show a warning on the ECDIS screen:

«No Official Data -Refer to paper chart »

What scale should an ENC be displayed at?

During production, ENCs are assigned a compilation scale based on the nature of the source data upon which they are based. They are also allocated to a navigational purpose band related to this. This is analogous to a series of paper chart covering the same area, ranging from “small scale charts” to “large scale plans”. As shown in the table below there are six navigational purpose bands (scale ranges are indicative only).

<table>
<thead>
<tr>
<th>Navigational Purpose</th>
<th>Name</th>
<th>Scale Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview</td>
<td><1:1 499 999</td>
</tr>
<tr>
<td>2</td>
<td>General</td>
<td>1:350 000 – 1:1 499 999</td>
</tr>
<tr>
<td>3</td>
<td>Coastal</td>
<td>1:90 000 – 1:349 999</td>
</tr>
<tr>
<td>4</td>
<td>Approach</td>
<td>1:22 000 – 1:89 999</td>
</tr>
<tr>
<td>5</td>
<td>Harbour</td>
<td>1:4 000 – 1:21 999</td>
</tr>
<tr>
<td>6</td>
<td>Berthing</td>
<td>> 1:4 000</td>
</tr>
</tbody>
</table>

To facilitate the display of a radar overlay on ENCs, the IHO specifications recommend that hydrographic offices set the compilation scales of their ENCs to be consistent with the standard radar range scales as shown in the following table:

<table>
<thead>
<tr>
<th>Selectable Range</th>
<th>Standard scale (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 NM</td>
<td>1:3 000 000</td>
</tr>
<tr>
<td>96 NM</td>
<td>1:1 500 000</td>
</tr>
<tr>
<td>48 NM</td>
<td>1:700 000</td>
</tr>
<tr>
<td>24NM</td>
<td>1:350 000</td>
</tr>
<tr>
<td>12 NM</td>
<td>1:180 000</td>
</tr>
<tr>
<td>6 NM</td>
<td>1:90 000</td>
</tr>
<tr>
<td>3 NM</td>
<td>1:45 000</td>
</tr>
<tr>
<td>1.5 NM</td>
<td>1:22 000</td>
</tr>
<tr>
<td>0.75NM</td>
<td>1:12 000</td>
</tr>
<tr>
<td>0.5 NM</td>
<td>1:8 000</td>
</tr>
<tr>
<td>0.25 NM</td>
<td>1:4 000</td>
</tr>
</tbody>
</table>
How are ENCs named?

Each ENC is identified by an 8-character identifier e.g. FR501050. The first two characters indicate the producer; e.g FR for France, GB for Great Britain. A complete list of producer codes is included in the IHO standard S-62). The third character (a number from 1 to 6) indicates the navigational purpose band (as shown in table 2). The last five characters are alpha-numeric and provide a unique identifier.

Updating ENCs

In principle the generation and distribution of regular updates for ENCs follows a similar organisational structure to the production and distribution of ENCs. The frequency of updates is normally synchronised with the chart corrections promulgated by national Notice to Mariners for the affected sea areas.

Updates may reach a ship via different ways depending upon the capabilities of the ENC service provider and the communication facilities onboard:

- On data distribution media, e.g. CD;
- As an e-mail attachment via SATCOM; and
- As a broadcast message via SATCOM plus additional communication hardware.

Raster Navigational Charts (RNCs)

General principles

RNCs are digital copies of paper charts conforming to IHO publication S-61 - *Product Specifications for Raster Navigational Chart (RNC)*. RNCs are issued by, or on the authority of a national Hydrographic Office.

When displayed on an ECDIS screen RNCs appear as a facsimile of the paper chart however, they contain significant metadata to ensure that they have a certain minimum functionality; such as a geo-referencing mechanism that allows geographic positions to be applied to and extracted from the chart, automatic updating of the RNC from digital files (and the ability to show the state of correction) and the display of the RNC in day or night colours.

An RNC is a digital copy of the current paper chart. As such the chart content cannot be analysed by a computer program to trigger alarms and warnings automatically as is the case with a vector chart; however, some alarm and warning functions can be achieved by manual user input to the ECDIS.

RNC data format and production

RNCs are normally produced by digitally scanning the stable printing plates used to make a paper chart. Unlike ENCs there can be more than one format for RNCs. The main RNC formats are

- BSB (used by USA, Canada, Cuba and Argentina), and
- HCRF (used by UK, Australia and New Zealand).

RNC Display

The display of RNCs is limited by the resolution at which they were scanned. Excessive zooming in or out of the image seriously degrades the clarity of the image (see figure 10 below). When the user wants to see a part of the chart in greater detail, then just like a paper chart, a larger scale RNC should be selected;
- Orientation of the RCDS display to other than north-up (e.g. course-up or route-up), may affect the readability of chart text and symbols;

- RNCs incorporate very similar colour palettes to the day/night colours used by ENCs. It is mandatory for ECDIS with an RCDS capability to provide the appropriate colour palettes for RNCs;

- RNCs are treated as individual charts (not seamless like ENCs). However, it is possible for ECDIS to automatically load adjoining chart, based on the meta data provided;

- ARPA radar targets can be overlaid onto an RNC. It is also possible for a radar video image to be scaled to fit an RNC. Scaling an RNC to fit a radar video image is inappropriate as this is likely to result in a degraded chart image; and

- RNCs include significant meta data to allow an ECDIS to make maximum use of the image. For example chart notes and tide panels may be accessed directly in RCDS mode rather than the user having to scroll to the appropriate area of the chart.

The image of an RNC retains the horizontal datum of the paper chart from which the RNC has been derived. However, the geo-referencing of the RNC can include an adjustment to account for the use of GPS and the WGS84 satellite datum. Mariners should understand, how the horizontal datum of the original chart relates to the datum used by the ship’s position fixing system. In some instances, this will appear as an apparent shift in geographical position. (Any differences will be most noticeable at grid intersections and during route monitoring). Where the difference between the local horizontal datum and WGS 84 is known, the adjustment should be automatically applied by the ECDIS. If the horizontal datum of the paper chart from which the RNC is produced is not known then it is not possible to relate GPS positions accurately to the RNC; IMO SN circular 255 has been issued to alert users to this problem.
Below are illustrated Day and Night colour schemes of a RNC:

![RNC Display, day](image1)

![RNC Display, night](image2)

RNC updating

- RNC updates can be supplied as complete refreshed images or as patches (tiles or areas) that the ECDIS can superimpose on the original RNC. The latter method is normally used as this minimises the amount of data to be provided;

- Updates are provided in line with those made available for the equivalent paper chart; and

- Most RNC services currently rely on CD as the transfer media; however electronic courier services are now being established to allow mariners to download selected chart updates.
Private Chart Data

Privately produced chart data may be provided in either vector or raster formats and superficially might seem similar to official chart data. However there are important differences in the type and quality of data being sold and while many companies take care in the production of electronic chart data to ensure both completeness and accuracy, this cannot be assumed for all.

Private chart data cannot be updated with the same regularity as official data. The private chart data suppliers normally base their products on official charts and data (supplied by HOs under licence). This means that the updating of their charts depends on the availability of the updated official chart product. Consequently there is a delay; sometimes considerable, between the promulgation of the updates for the official charts and the release of updates for private chart data.

Chart data published by private companies is not quality controlled or assured by a Government organisation; therefore the product liability is entirely the responsibility of the producing company.

In 2003 ISO published a specific standard for the compilation of private chart data; this standard was produced on the initiative of the private chart data industry: ISO 19379 applies to both private vector charts and to private raster charts.

Private chart data, regardless of the format in which it is supplied to the market or any ISO certification does not meet the requirements specified by the IMO Performance Standards for ECDIS and thus does not meet the chart carriage requirements.

In contrast to ENCs and RNCs many proprietary formats are used. Consequently, chart data from different manufacturers are often incompatible with each other – and so are the ECS which make use of them.
Section 5: References and Glossary

References

- International Convention for the Safety of Life at Sea (SOLAS)
- International Convention for Standards for Training, Certification and Watchkeeping (STCW)
- IMO Resolution MSC.232 (82): Performance Standards for ECDIS
- IEC 61174: Electronic chart display and information system (ECDIS) - Operational and performance requirements, methods of testing and required test results
- IEC 62288: Maritime navigation and radiocommunication equipment and systems - Presentation of navigation-related information on shipborne navigational displays – General requirements, methods of testing and required test results
- IHO S-52: Specifications for Chart Content and Display Aspects of ECDIS;
- IHO S-57: IHO Transfer Standard for Digital Hydrographic Data
- IHO S-61: IHO Product Specification for Raster Navigational Charts
- IHO S-62: IHO Codes for producing Agencies
- IHO S-63: IHO Data Protection Scheme.

For information on the latest versions of documents mentioned above, consult the web site of the issuing organisation:

International Maritime Organization www.imo.org
International Hydrographic Organization www.iho.int
International Electrotechnical Commission http://www.iec.ch
Glossary/List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Automatic Identification System</td>
</tr>
<tr>
<td>ARPA</td>
<td>Automatic Radar Plotting Aid</td>
</tr>
<tr>
<td>BIMCO</td>
<td>The world's largest Association of ship-owners and others representing more than 65% of the world’s tonnage</td>
</tr>
<tr>
<td>BSB</td>
<td>Raster data format used by USA and Canada and others (BSB comes from the first letter of the companies that joined together with NOAA to make the first NOAA raster charts: Better Boating Association, Sewall Company and Blue Marble Geographics)</td>
</tr>
<tr>
<td>ECDIS</td>
<td>Electronic Chart Display and Information System</td>
</tr>
<tr>
<td>ECS</td>
<td>Electronic Chart System (does not meet SOLAS requirements)</td>
</tr>
<tr>
<td>ECS charts</td>
<td>Non official (private) chart data (vector or raster)</td>
</tr>
<tr>
<td>ENC</td>
<td>Electronic Navigational Chart</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HCRF</td>
<td>Hydrographic Chart Raster Format</td>
</tr>
<tr>
<td>Hydrographic Office (HO)</td>
<td>National Hydrographic Office</td>
</tr>
<tr>
<td>IC-ENC</td>
<td>International Centre for ENC’s - a RENC operated by UK Hydrographic Office and in collaboration with the Australian Hydrographic Service</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IHO</td>
<td>International Hydrographic Organization</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>ISM</td>
<td>International Safety Management code</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>MED</td>
<td>Maritime Equipment Directive of the European Union</td>
</tr>
<tr>
<td>PRIMAR</td>
<td>a RENC operated by the Norwegian Hydrographic Service</td>
</tr>
<tr>
<td>PSC</td>
<td>Port State Control</td>
</tr>
<tr>
<td>PSCO</td>
<td>Port State Control Officer</td>
</tr>
<tr>
<td>RCDS</td>
<td>Raster Chart Display System</td>
</tr>
<tr>
<td>RENC</td>
<td>Regional ENC Coordination Centre</td>
</tr>
<tr>
<td>RNC</td>
<td>Raster Navigational Chart</td>
</tr>
<tr>
<td>RTCM</td>
<td>Radio Technical Commission for Maritime Services</td>
</tr>
<tr>
<td>SATCOM</td>
<td>Satellite Communications</td>
</tr>
<tr>
<td>SENC</td>
<td>System ENC</td>
</tr>
<tr>
<td>SOLAS</td>
<td>International Convention on the Safety of Life at Sea</td>
</tr>
<tr>
<td>WEND</td>
<td>World ENC Database</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System 1984</td>
</tr>
</tbody>
</table>
Further Reading:

From Paper Charts to ECDIS – A Practical Voyage Plan; by Harry Gale; February 2009; Publisher: The Nautical Institute; ISBN 978 1 870077 98 9

ECDIS and Positioning, Vol 2 of Integrated Bridge Series; by Dr Andy Norris; January 2010; Publisher: The Nautical Institute; ISBN 978 1 906915 12 4

Relevant IMO Safety of Navigation Circulars

IMO SN/ Circ. 207/Rev.1: Differences between RCDS and ECDIS

DIFFERENCES BETWEEN RCDS AND ECDIS

1 The Maritime Safety Committee, at its eighty-third session (3 to 12 October 2007), adopted revised performance standards for Electronic Chart Display and Information Systems (ECDIS) and accordingly agreed to the revision of SN/Circ.207 on difference between Raster Chart Display System (RCDS) and ECDIS.

2 ECDIS has the ability to operate in two modes:
 .1 the ECDIS mode when Electronic Navigational Charts (ENCs) are used, and
 .2 the RCDS mode when ENCIs are not available and Raster Navigational Charts (RNCs) are used instead.

However, the RCDS mode does not have the full functionality of ECDIS, and can only be used together with an appropriate portfolio of up-to-date paper charts.

3 The mariners’ attention is therefore drawn to the following limitations of the RCDS mode:
 .1 unlike ENC, where there are no displayed boundaries, RNCs are based on paper charts and as such have boundaries which are evident in ECDIS;
 .2 RNCs will not trigger automatic alarms (e.g., anti-grounding). However alarms and indications can be generated with the manual addition, during passage planning, e.g., of clearing lines, ship safety contour lines, isolated danger markers and danger areas to mitigate these limitations;
 .3 horizontal datums and chart projections may differ between RNCs. Mariners should understand how a chart’s horizontal datum relates to the datum of the position fixing system in use. In some instances, this may appear as a shift in position. This difference may be most noticeable at grid intersections;
 .4 a number of RNCs cannot be referenced to either WGS-84 or PE 90 geodetic datums. Where this is the case, ECDIS should give a continuous indication;
 .5 the display of RNCs features cannot be simplified by the removal of features to suit a particular navigational circumstance or task at hand. This could affect the superimposition of radar/ARPA;
 .6 without selecting different scale charts the look-ahead capability may be limited. This may lead to inconvenience when determining range and bearing or the identity of distant objects;
7 orientation of the RCDS display to other than chart-up, may affect the readability
of chart text and symbols (e.g., course-up, route-up);

8 it is not possible to interrogate RNC features to gain additional information about
charted objects. Whether using ENC or RNC, in the planning process a navigator
should consult all relevant publications (such as sailing directions, etc.);

9 with RNC it is not possible to display a ship's safety contour or safety depth and
highlight it on the display, unless these features are manually entered during route
planning;

10 depending on the source of the RNC, different colours may be used to show
similar chart information. There may also be differences in colours used during
day and night time;

11 an RNC is intended to be used at the scale of the equivalent paper chart.
Excessive zooming in or zooming out can seriously degrade the displayed image.
If the RNC is displayed at a larger scale than the equivalent paper chart, the
ECDIS will provide an indication; and

12 ECDIS provides an indication in the ENC which allows a determination of the
quality of hydrographic the data. When using RNCs, mariners are invited to
consult the source diagram or the zone of confidence diagram, if available.

4 Member Governments are requested to bring this information to the attention of the
relevant authorities and all seafarers for guidance and action, as appropriate.
ADDENDUM GUIDANCE ON CHART DATUMS AND THE ACCURACY OF POSITIONS ON CHARTS

1. The Sub-Committee on Safety of Navigation, at its fifty-second session (17 to 21 July 2006), approved additional guidance on chart datums and the accuracy of positions on charts, given at annex. This guidance is provided in addition to the guidance contained in SN/Circ.215 dated 31 May 2000.

2. Member Governments are invited to bring this guidance to the attention of all concerned for information, in particular, by having them published in pertinent official nautical publications and action, as appropriate.

ANNEX

ADDITIONAL GUIDANCE ON CHART DATUMS AND THE ACCURACY OF POSITIONS ON CHARTS

In some areas of the world there are charts that are based on old surveys for which there is no determined geodetic datum or the datum is imprecise. Therefore in such areas, paper charts (and thus raster navigational charts) are not compatible with GNSS navigation, and it will take some time to resolve this problem. This makes it extremely difficult to accurately plot the ship’s position obtained by the GNSS in relation to surrounding dangers on such charts. The difference in the plotted position can often be significant and could lead to a casualty or unnecessary risk in restricted waters.

Cross-checking of position using visual or radar fixing or ECDIS radar overlay can provide for the immediate detection of datum inconsistencies in electronic charts, and immediately alert the mariner on potential positional shifts required for particular charts. Some ECDIS equipment exceeds the minimum requirements of the ECDIS Performance standards, by providing such features as radar overlay.

In general, when navigating with GNSS, mariners should undertake all available measures to check the position of the ship obtained by continuous position fixing systems and plotted on any charts, such as using radar and visual observation methods.
IMO SN/ Circ. 276: Transitioning from paper chart to Electronic Chart Display and Information Systems (ECDIS) navigation

ANNEX

GUIDANCE ON TRANSITIONING FROM PAPER CHART TO ECDIS NAVIGATION

Introduction

1 The following guidance and information is provided to assist those involved with the transition from paper chart to ECDIS navigation.

Transition and training

2 As an initial step, shipowners and operators should undertake an assessment of the issues involved in changing from paper chart to ECDIS navigation. Ships’ crews should participate in any such assessment so as to capture any practical concerns or needs of those that would be required to use ECDIS. Such a process will help facilitate an early understanding of any issues to be addressed and will aid ships’ crews prepare for change.

3 Documenting the assessment of issues, combined with the development of ECDIS standard operating procedures, will help lead to the adoption of robust ECDIS navigation practices, simplification of crew training and facilitate smooth handovers between crews.

4 In addition, shipowners and operators should ensure that their ships’ crews are provided with a comprehensive familiarization programme and type-specific training; and that the ships’ crew fully understand that the use of electronic charts aboard ship continues to require the need for passage planning.

IHO catalogue of chart coverage

5 The International Hydrographic Organization (IHO) provides an online chart catalogue that details the coverage of Electronic Navigational Charts (ENC) and Raster Navigational Charts (RNC) (where they exist and where there is not yet ENC coverage) together with references to coastal State guidance on any requirements for paper charts (where this has been provided). The catalogue also provides links to IHO Member States’ websites where additional information may be found. The IHO online chart catalogue can be accessed from the IHO website at: www.iho.int.

Additional information

6 In addition to national and international rules, regulations, the IMO model course and performance standards, the IHO has published an online publication Facts about electronic charts and carriage requirements. It is a recommended source of information on ECDIS hardware, training and the technical aspects of electronic chart data. Copies are available free of charge from various sources including: www.iho.int and http://www.ic-enc.org/page_news_articles2.asp?id=12.

* IMO Model Course 1.27 on Operational Use of Electronic Chart Display and Information Systems (ECDIS).

I:CIRC5SN/01276.doc